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Abstract

I study a model in which traders buy information from a monopolistic seller which is later

used to trade in the financial market. My model is based on the single-period version of Kyle

(1985). The data seller can sell the signal of different quality, and the traders are heterogeneous

in their ability to interpret the purchased signal. The regulator’s utility function depends on the

resulting price informativeness and the welfare of the liquidity traders. I show that trading on

information bought through data markets has similar effects on price informativeness and the

welfare of the liquidity traders as insider trading. Liquidity traders suffer even more if a small

number of traders use the information than if only one trader uses it. I study optimal data

seller’s behavior in the absence of regulation and under different regulation regimes. Requiring

the data seller to sell the data through an auction with payments contingent on the traders’

future profits and setting a lower bound on the quantity that needs to be sold ex ante increases

both price informativeness and liquidity traders’ welfare.

∗I am grateful to Mohammad Akbarpour, Jeremy Bulow, Ishaan Nerurkar and Michael Ostrovsky for helpful
discussions. I thank Anat Admati and Paul Pfleiderer for their insightful comments.



1 Introduction

Website scraping, credit/debit card transactions, app usage, geolocation, satellite imagery – these

are just some examples of alternative data that investment managers spend millions of dollars on

every year. The alternative data market has more that quadrupled in the last three years – from

$400m in 2017 to $1700m in 2020 (alternativedata.org), and is expected to grow at a compound

annual growth rate of 40% from 2020 to 2027 (grandviewresearch.com). Such a burgeoning new

market poses many questions for regulators. One such question is: where is the line between finding

alpha and trading on insider information? Let’s consider two real scenarios:

1. A data analyst for Capital One downloaded and analyzed data on retail purchases made with

Capital One credit cards. He used this information to predict revenues of retailers; then, he

traded retailers’ stocks in advance of the public release of quarterly sales announcements by

these companies. (SEC v. Huang (2016))

2. “ Speaking at a conference on alternative investments at the London School of Economics,

Matthew Granade, Point72’s chief market intelligence officer, bragged that they scrutinise

80m credit card transactions every day. Coupled with satellite images that can scan car

parks and geolocation data from mobile phones to show how many people are visiting various

stores, the investment group can get a real-time idea of how companies are doing, long before

their results are released.

One LSE student asked how all this data could help Point72 if everyone had access to the

same information. The answer was exclusivity agreements, Mr Granade said: “The great

thing about this area is you can arrange deals where you are the only ones who get it.””

(“Hedge funds see a gold rush in data mining”, Financial times (2017))

The two stories are very similar – in both of them someone obtained a unique access to the credit

card transactions data and used it to trade in the financial markets. What would we expect the

legal consequences to be in these two cases?

Most (if not all) regulations in the world would classify the first story as a classic example

of an illegal insider trading, and indeed the data analyst was found liable. The second story is,
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however, more controversial. For instance, the American and European regulations would disagree

on whether it represents an instance of illegal insider trading. Paragraph 28 of the Market Abuse

Regulation (EU) states that “Research and estimates based on publicly available data, should not

per se be regarded as inside information and the mere fact that a transaction is carried out on the

basis of research or estimates should not therefore be deemed to constitute use of inside information.

However, for example, where the publication or distribution of information is routinely expected by

the market and where such publication or distribution contributes to the price-formation process

of financial instruments, or the information provides views from a recognised market commenta-

tor or institution which may inform the prices of related financial instruments, the information

may constitute inside information. Market actors must therefore consider the extent to which the

information is non-public and the possible effect on financial instruments traded in advance of

its publication or distribution, to establish whether they would be trading on the basis of inside

information.”

In contrast, U.S. Securities and Exchange Commission provides the following definition: “ Illegal

insider trading refers generally to buying or selling a security, in breach of a fiduciary duty or other

relationship of trust and confidence, on the basis of material, nonpublic information about the

security.”

As one can see, the European regulation prohibits trading on any material, nonpublic informa-

tion while the U.S. regulation allows trading on material, nonpublic information as long as that

information was obtained legally (for example, bought from a bank which clients agreed that their

information can be shared). Which of these two policies makes more sense? And is there a better

alternative? In this paper I propose an answer to the question: "why regulate data markets?". I also

highlight some of the trade-offs that the regulators face when choosing between different policies.

My set up consists of a data market, a financial market, and a production economy. One risky

asset is being traded in the financial market as in the one-period version of Kyle (1985). The

model assumes there are two types of traders. The first type maximizes their profit (e.g. hedge

funds). The second type trades for other reasons: for example, as a way of spending time during the

pandemic (liquidity traders) and whose demand is random. The data seller can provide a dataset
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containing some useful information about the future realization of the payoff of the asset. The

data seller can choose the quality of the data that he sells. The data needs to be interpreted in

order to make an inference about the future payoff. The hedge funds are heterogeneous in their

interpretation skills – after observing the same dataset some of them make more precise inferences

than others. The regulator sets the rules which the data seller has to follow when selling the

dataset to the hedge funds. The hedge funds then use the data to trade in the financial market.

The resulting market price can be characterized in terms of how much information it contains. I

measure price informativeness as the covariance between the price and the payoff. In general, price

informativeness is increasing in the number of hedge funds who get access to the data, in their

competence (i.e. data interpretation skills), and in the initial quality of the data. The amount of

information contained in the asset’s market price impacts the efficiency of resource allocation in

the economy and, therefore, the output (Wurgler (2000), David et al. (2016)). When prices are

informative, the capital is more likely to be invested in successful projects rather than those that

are going to fail. This results in a higher output. 1

The regulator’s utility is increasing in the output (and, therefore, price informativeness) and in

the welfare of the liquidity traders. Why does the regulator care about liquidity traders’ profit even

though it is just a transfer from one market participant to another? One reason could be fairness

(in expectation hedge funds receive their profits at the expense of the liquidity traders), another

could be that the liquidity traders might leave the market if their losses become too high which

would adversely impact the overall economy (as the amount of liquidity in the capital markets

would be significantly reduced).

I first study the benchmark scenario of no regulation. In the absence of regulation it is optimal

for the data seller to choose the highest quality of the data and sell it to an exclusive set of the

most competent funds by making Take-It-or-Leave-It offers. In this case liquidity traders’ welfare
1The assumption here is that the information gets reflected in the prices substantially earlier than it would had

the insider trading not occurred. An example of this is when a dataset helps to predict companies’ performance
months in advance of its quarterly/yearly releases. It is hard to justify selling access to exclusive information seconds
before other traders get it by an increase in price efficiency. This might be why there has been so far more regulator’s
action in the domain of selling data for high-frequency trading: for instance, in 2013 New York Attorney General
Eric Schneiderman requested that Thomson Reuters stops selling exclusive access to their consumer sentiment data
to a small group of clients 2 seconds before its other clients.
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achieves its absolute minimum, i.e. several hedge funds trading on exclusive data can hurt the

liquidity traders even more than just one insider trader. Though, the price informativeness in this

case is higher than if there was one insider trader. Therefore, it is possible that the regulator’s

utility function has the following property: In the case of selling the data through data markets,

the upside of increased price informativeness offsets the downside of decreased liquidity traders’

welfare, but in the case of insider trading, this does not happen. However, I show that it is possible

for the regulator to ex ante increase both the price informativeness and the welfare of the liquidity

traders by choosing the right policy.

Is the E.U. regulation an improvement on the U.S. one? Not necessarily. The European regula-

tion does not specify which mechanisms should be used when selling the data, however, it says that

the data should be publicly available. Since it is legal to sell, for example, Bloomberg Terminal or

Refinitiv Eikon, I interpret publicly available as non-discriminatory rather than free. I therefore

model the E.U. regulation as requiring the data seller to set a fixed price and sell to everyone who

is willing to purchase the data at this price. It is intuitive that the data seller can still limit the

number of buyers by simply setting the price high enough. Even though it is possible that such

a policy incentivizes the data seller to sell to more buyers, in many cases he will choose to sell to

less buyers than if there was no regulation. Including an additional buyer is now even more costly

since the amount of money charged to other buyers needs to be reduced, not only to the extent

that their profits got hurt by an increased competition, but to the price level acceptable to the new

buyer. Moreover, if in the absence of regulation it was optimal for the data seller to sell to only

one hedge fund, he would always continue doing so under the European regulation.

A natural alternative suggestion for the regulator would be to set a lower bound on the number

of the datasets sold, but still allow the data seller to choose who to sell to and at what prices.

An issue with this policy is that it may be no longer optimal for the data seller to sell to the

most competent funds. If there are enough extremely incompetent funds in the market, the data

seller will sell to just enough of the incompetent funds to satisfy the regulator, and to the set of

funds who he would have sold to in the absence of regulation. Neither price informativeness nor

liquidity traders’ welfare would change in any significant way, and so the policy would end up being
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ineffective.

The above issue can be fixed if the regulator does not only set a lower bound on the quantity,

but also imposes a mechanism on the data seller (such as an auction). It is important to choose a

right auction format. One issue that may arise is as follows: suppose data seller sells K datasets

through a K + 1 price auction K, then, the most competent funds will indeed win in equilibrium.

However, this creates a new challenge for the regulator: it can be optimal for the data seller to

make data noisy.

Finally, I study an auction with contingent payments and a lower bound on the quantity in

which the funds bid a share of their future profit rather than a dollar amount. This auction format

is based on Hansen (1985) and DeMarzo et al. (2005). I show that when such an auction is used, a

subset of the most competent funds receive the data in equilibrium, and the data seller chooses to

provide the highest quality of the data. This policy ex ante increases both the price informativeness

and the welfare of the liquidity traders.

1.1 Related work

Financial market is the core element of the model, and the paper is directly related to the literature

on one-period version of Kyle (1985). In Kyle (1985) there is one informed trader who knows the

realization of the asset’s payoff exactly. Admati and Pfleiderer (1988) study a model with multiple

informed traders who observe the payoff with some error such that the realization of the error is

the same for everyone. Dridi and Germain (2009) study a model with multiple informed traders

who observe the payoff with some error but the errors are independent among the informed traders

and the variances of the errors are allowed to be different. A special case of my signal structure

when the hedge funds’ interpretation errors are equal to zero is described by Admati and Pfleiderer

(1988). A special case of my signal structure when the data seller chooses the highest quality of

the data is described by Dridi and Germain (2009). In Jain and Mirman (1999) the market makers

observe not only the aggregate demand but also a separate signal about the payoff. Lambert et al.

(2017) provide a general framework in which the strategic traders and the market makers observe

multidimensional signals that are jointly normally distributed but allowed to have an arbitrary
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covariance matrix. Caballe and Krishnan (1994) and Pasquariello (2007) study a one-period model

in which several assets are being traded but require the traders to have symmetric information.

There is a separate body of literature on the dynamic version of Kyle (1985) and Kyle (1989) in

which the traders submit demand and supply curves instead of market orders.

This paper relates to a general topic of markets for information (see Bergemann et al. (2019)

for a survey) and, in particular, markets for information that is used for trading. The seminal

papers are by Admati and Pfleiderer (1986, 1987, 1988). The closest paper to my setting in the

absence of regulation is Admati and Pfleiderer (1988) in which a monopolist sells information that

is later being used for trading in one-period Kyle (1985) setting. Our results overlap when the

strategic traders are risk-neutral and receive the same signal. In this scenario, it is optimal for the

data seller to provide the data of the highest quality and sell to only one buyer (or trade in the

market himself). Outside of this scenario, Admati and Pfleiderer (1988) show that it is optimal to

sell to more than one buyer if the traders are risk-averse. I show that it is optimal to sell to more

than one buyer when the traders are risk-neutral but observe different signals (i.e. their errors are

independent). Garcia and Sangiorgi (2011) generalize Admati and Pfleiderer (1988) by allowing

the data seller to add personalized noise. Chen and Wilhelm Jr (2012) consider a setting in which

multiple traders have information that they can use for trading themselves or sell to other traders.

In Foucault and Lescourret (2003) and Eren and Ozsoylev (2006) informed traders can share their

information with each other rather than sell it.

Finally, this paper is related to the literature on insider trading. Shin (1996) and DeMarzo et

al. (1998) solve for the optimal investigation and punishment policy when the regulator’s objective

is to maximize the welfare of the liquidity traders. In Shin (1996) there are an insider who knows

the realization of the payoff and a market professional who observes a noisy signal and can improve

the precision of their signal at a cost. Even though the regulation is costless it is optimal to still

allow some amount of insider trading since it reduces the incentives of the market professional to

invest in the quality of their signal and, hence, reduces the expected loss for the liquidity traders.

DeMarzo et al. (1998) also conclude that not every trade should be investigated but rather because

investigation is costly. Their optimal policy entails investigations following large trading volumes
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or large price movements or both. Manne (1969), Carlton and Fischel (1983), Leland (1992) argue

that insider trading contributes to more informative prices. Shin (1996) and Fishman and Hagerty

(1992) show that it is possible that insider trading decreases price informativeness since it reduces

the incentives of other traders to acquire information and trade. Ausubel (1990) argues that

insider traders may be themselves interested in insider trading regulation in order to incentivize

other market participants to invest more without fearing being taken advantage of.

2 The model

The set up consists of a data market, a financial market and a production economy. The financial

market is a modification of the one-period version of the set up introduced in Kyle (1985). One

risky asset is being traded among three types of players: N hedge funds, liquidity traders and

market makers. The distribution of the asset’s payoff is commonly known: ṽ ∼ N(v, σ2). The

players in the data market are the same N hedge funds, a data seller (he) and a regulator (she).

Before the trading happens the data seller can produce a dataset at a fixed cost R > 0 and sell

it to a subset of the funds. I assume that there is no resell of information and that the data seller

cannot trade on the information himself. The dataset contains an unbiased estimate of the payoff

ṽ + η, where η ∼ N(0, cησ2). The data seller can choose the value of cη: cη = 0 corresponds to

no additional noise; the greater cη the noisier the information. In practice adding noise can mean

not properly cleaning the data or purposefully providing only a part of the available data. η is an

objective measure of the quality of the data, higher cη makes the data less informative for everyone.

If fund i purchases the dataset, it observes ṽ + η + εi, where εi ∼ N(0, ciσ2) is the fund-specific

interpretation error. εi is independent of all other variables in the model. The interpretation is that

the funds that have better data science teams/complementary datasets will have lower ci. I will

use the following terminology: if for two funds i and j ci < cj , I will say that i is more competent

than j. I will refer to cη as data error and to ci as analyst i error for brevity (even though it would

be correct to say data error variance and analyst error variance instead).

In the financial market the trading happens in two steps: first, hedge funds and liquidity traders

simultaneously place market orders – quantities of the asset they they want to buy/sell, then market
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makers observe the aggregate demand and compete for the opportunity to fulfill it, this drives the

market price to be equal to the expectation of ṽ conditional on the observed aggregate demand.

Liquidity traders’ demand yl is random, yl ∼ N(0, σ2
l ). Hedge fund i maximizes its expected profit

given Ii – the information it has about the realization of ṽ. If fund i has access to the data,

Ii = ṽ+η+ εi, otherwise, it does not have any additional information besides the commonly known

distribution of ṽ. The hedge funds do not behave as price takers, they understand that the size of

their orders influences the market price. Fund i, therefore, chooses its demand yi by solving the

following problem:

max
yi

E

yi ·
ṽ − E

ṽ | N∑
j=1

yj + yl

 | Ii
 ,

where E
(
ṽ |
∑N
j=1 yj + yl

)
= P is the resulting market price.

The market price can be characterized in terms of its informativeness. I define price informa-

tiveness (PI) as Cov(ṽ, P ). The output in the economy Y is some increasing function of PI.

The regulator’s utility function is ureg = g(Y (PI), πl), where πl is the expected profit of the

liquidity traders. I assume that g is increasing in both arguments.

The timing of the game is as follows:

Step 1: The regulator chooses a policy;

Step 2: The profile of the analyst errors {c1, ..., cN} is realized (ci is drawn i.i.d. from some

distribution F on [0,∞)) and becomes publicly known;

Step 3: The data seller decides whether to collect a dataset at a fixed commonly known cost

R > 0.

If he does not, then the game proceeds to step 5.

If he does, he also chooses cη ≥ 0. Then the game proceeds to step 4;

Step 4: Some funds purchase the data from the data seller (in accordance with the policy);

Step 5: The play in the financial market happens. The profits and the utility of the regulator

are realized.
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2.1 Discussion of the assumptions

One assumption is that the data seller’s cost is independent of the quality of the data. The rationale

for this assumption is that the fixed costs of producing the data are usually much higher than the

variable costs: in many cases the data is a byproduct of the main business (for example, record of

financial transactions for the banks or medical records for the insurance companies) in which case

the data seller chooses the quality of the data by deciding how much of the available data he is

willing to share. Even if the data seller is actually producing the data, it is costly to write code for

scraping the Internet or extracting information from satellite images but it is much less costly to

then apply it to additional websites/GPS coordinates to increase the precision of the signal.

Two strongest assumptions are that the funds’ competence levels are publicly known and that

all the funds know who purchased the data before the trading happens. These assumptions are not

particularly realistic but understanding the mechanics of the model in this setting is useful for the

future research that will relax these assumptions.

Finally, all random variables in the model are assumed to be normally distributed which is

standard in the literature on Kyle (1985).

3 Financial market

3.1 Funds’ perspective

Definition 3.1. A profile of market orders of the hedge funds y = {y1, ..., yN} and a market price

P constitute an equilibrium if the following conditions hold:

(1) The market price is equal to the expected payoff of the asset conditional on observing the

order flow: P = E(ṽ |
∑N
i=1 yi);

(2) The market order yi of an informed fund i maximizes its expected profit conditional on

observing its signal from the data and given the primitives of the model and the market orders of

other players:

yi ∈ arg max
z

E

z ·
ṽ − E

ṽ | z +
∑
j 6=1

yj + yl

 | ṽ + η + εi

 ;
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(3) The market order yi of an uninformed fund i maximizes its expected profit given the prim-

itives of the model and the market orders of other players:

yi ∈ arg max
z

E

z ·
ṽ − E

ṽ | z +
∑
j 6=1

yj + yl

 .
Proposition 1. 2 Given a set of informed hedge funds I, the following profile of market orders

y = {y1, ..., yN} and market price P constitute an equilibrium:

(1) P = v + λ(
∑N
i=1 yi + yl);

(2) If fund i is uninformed (i.e. i /∈ I), then yi = 0;

(3) If fund i is informed (i.e. i ∈ I), then yi = αi
λ (ṽ + η + εi − v);

where

αi = 1

(1 + cη + 2ci)
(

1 +
∑
j∈I

1
1+

2cj
1+cη

) (3.1)

and

λ = σ

σl

√∑
i∈I

α2
i (1 + cη + ci).3 (3.2)

Proof. See Appendix A.1.

Proposition 1 states that the optimal market order of an informed fund i depends on which

other funds are informed. The following proposition provide some insight into the direction of that

dependence:

Proposition 2. If i, j ∈ I if ci < cj, then (1) αi > αj and (2) as cη →∞, αi
αj
→ 1.

Proof. (1) By 3.1 for any i, j ∈ I

αj = 1 + cη + 2ci
1 + cη + 2cj

αi. (3.3)

Clearly, if ci < cj , then αi > αj .
2Dridi and Germain (2009) provide the analogues of Propositions 1-6 in the special cade when η = 0.
3Since both αi and λ are functions of I and cη, Iwill generally use the notation αi(I, cη) and λ(I, cη). However,

sometimes I and cη might be fixed and clear from the context, in which case Iwill use αi and λ to simplify notation.
If cη is fixed but the set of informed funds is changing, Iwill write αi(I) for clarity.
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(2)

lim
cη→∞

αi
αj

= lim
cη→∞

1+2cj
cη

+ 1
1+2ci
cη

+ 1
= 1.

Proposition 2 implies that higher precision funds have larger demand coefficients (αi > αj

implies that αi
λ >

αj
λ ). It does not necessarily mean that i’s market order is larger than j’s market

order since in a particular realisation εi could be very small and εj could be very large. But since

on average a high signal is more likely to be caused by a high asset’s payoff for i than it is for

j, i "trusts" its signal more. However, this difference becomes less pronounced with the amount

of added noise. Intuitively, if the data is very noisy, it does not really matter who has better

interpretation skills.

Given the equilibrium market orders and market price, Ican derive πi – the expected profit of

an informed fund i:

Proposition 3. πi = σ2α2
i

λ (1 + cη + ci) 4.

Proof.

πi = E (yi · (ṽ − P )) = E
(
yi ·

(
ṽ − v − λ

(
N∑
i=1

yj + yl

)))
=

= E

αi
λ

(ṽ + η + εi − v) ·

ṽ − v − λ
∑
i∈I

αi
λ

(ṽ + η + εi − v) + yl

 =

= αi
λ

E ((ṽ − v)2
)
− αiE

(
(ṽ + η + εi − v)2

)
− (

∑
j∈I,j 6=i

αj)E (ṽ + η − v)

 =

= αi
λ

σ2 − αi(σ2 + cησ
2 + ciσ

2)− (
∑

j∈I,j 6=i
αj)(σ2 + cησ

2)

 =

= σ2αi
λ

1− αi(1 + cη + ci)− (
∑

j∈I,j 6=i
αj)(1 + cη)

 = σ2α2
i

λ
(1 + cη + ci),

4Since πi is a function of I and cη, Iwill generally use the notation πi(I, cη). However, sometimes I and cη might
be fixed and clear from the context, in which case Iwill use πi to simplify notation.
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where the last equality holds since 1− (
∑
j∈I,j 6=i αj)(1 + cη) = 2(1 + cη + ci)αi by A.2.

Proposition 4. If i, j ∈ I and ci < cj, then πi > πj.

Proof. By 3.1

αj = 1 + cη + 2ci
1 + cη + 2cj

αi,

then

α2
i (1+cη+ci)−α2

j (1+cη+cj) = α2
i

(
1 + cη + ci −

(1 + cη + cj)(1 + cη + 2ci)
1 + cη + 2cj

)
= α2

i (1 + cη)(cj − ci)
1 + cη + 2cj

> 0.

Hence, πi = σ2α2
i

λ (1 + cη + ci) >
σ2α2

j

λ (1 + cη + cj) = πj .

Proposition 4 compares the expected profits of two different informed funds and shows that

higher precision funds will enjoy higher expected profits. The following propositions provide some

complementary comparative statics results for a particular fund:

Proposition 5. The expected profit of an informed fund i πi = σ2α2
i

λ (1 + cη + ci) is decreasing in

ci given the variances of the errors of other informed funds c−i.

Proof. Consider ci and ci′ > ci. Let αi, αj , λ (αi′, αj ′, λ′) be the equilibrium parameters associated

with the profile of the error variances ci, c−i (ci′, c−i).

Case 1: λ′ > λ. Using 3.1,

α2
i (1 + cη + ci) = 1 + cη + ci(

2(1 + cη + ci) + (1 + cη + 2ci)
∑
j∈I,j 6=i

1
1+

2cj
1+cη

)2 .

Let s =
∑
j∈I,j 6=i

1
1+

2cj
1+cη

, note that s > 0. Then

∂

∂ci
α2
i (1 + cη + ci) = −(1 + cη)(3s+ 2)− 2(s+ 1)ci

(2(1 + cη + ci) + (1 + cη + 2ci)s)3 < 0.

Therefore, α2
i (1 + cη + ci) is decreasing in ci which implies that αi′2(1 + cη + ci′) < α2

i (1 + cη + ci).

And since λ′ > λ, πi′ = σ2αi′2(1+cη+ci′)
λ′ <

σ2α2
i (1+cη+ci)

λ = πi.
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Case 2: λ′ ≤ λ.

Step 1: αj ′ > αj since by 3.1,

1

(1 + cη + 2cj)
(

1 +
∑
k∈I,k 6=i

1
1+ 2ck

1+cη

+ 1
1+ 2ci′

1+cη

) >
1

(1 + cη + 2cj)
(

1 +
∑
k∈I,k 6=i

1
1+ 2ck

1+cη

+ 1
1+ 2ci

1+cη

) .

Step 2: Since λ′ ≤ λ and αj ′ > αj , πj ′ = σ2αj ′2(1+cη+cj)
λ′ >

σ2α2
j (1+cη+cj)

λ = πj .

Step 3:

∑
i∈I

πi =
∑
i∈I

σ2α2
i (1 + cη + ci)

λ
= σ2∑

i∈I α
2
i (1 + cη + ci)

σ
σl

√∑
i∈I α

2
i (1 + cη + ci)

= σσl

√∑
i∈I

α2
i (1 + cη + ci) = λσ2

l .

(3.4)

Step 4: Since λ′ ≤ λ, the sum of all the expected profits weakly decreases when i becomes

less precise. But the expected profit of everyone except i increases. Therefore, it must be that i’s

expected profit decreases, i.e. πi′ < πi.

Proposition 6. For any two informed funds i and j i’s expected profit πi = σ2α2
i

λ (1 + cη + ci) is

increasing in cj.

Proof. Consider cj and cj ′ > cj . Let αi, αj , λ (αi′, αj ′, λ′) be the equilibrium parameters associated

with the profile of the error variances cj , c−j (cj ′, c−j).

Case 1: λ′ ≤ λ. Note that αi′ > αi since

1

(1 + cη + 2ci)
(

1 +
∑
k∈I,k 6=j

1
1+ 2ck

1+cη

+ 1
1+

2cj ′
1+cη

) >
1

(1 + cη + 2ci)
(

1 +
∑
k∈I,k 6=j

1
1+ 2ck

1+cη

+ 1
1+

2cj
1+cη

)

Therefore, πi′ = σ2αi′2
λ′ (1 + cη + ci) >

σ2α2
i

λ (1 + cη + ci) = πi.

Case 2: λ′ > λ. By 3.4 it means that the sum of the profits of the informed funds increased. By

Proposition 5 j’s profit decreased. Hence, the sum of the profits of all the informed funds without

13



j increased. For any i ∈ I \ {j}

∂πi
∂cj

= σ2(1 + cη + ci)
1 + cη + 2ci

· ∂
∂cj

 1

λ

(
1 +

∑
k∈I

1
1+ 2ck

1+cη

)


and

πi′ − πi =
ˆ cj ′

cj

∂πi
∂cm

dcm = σ2(1 + cη + ci)
1 + cη + 2ci

ˆ cj ′

cj

∂

∂cm

 1

λ

(
1 +

∑
k∈I

1
1+ 2ck

1+cη

)
 dcm.

Note that for all i ∈ I \ {j} the term under the integral is the same, and σ2(1+cη+ci)
1+cη+2ci > 0. Hence,

the direction of the change of the profit is the same for all the informed funds without j. Since the

sum of their profits increased, it needs to be the case that πi′ > πi for all i ∈ I \ {j}.

Proposition 7. For any set of informed funds I, any i ∈ I and any j ∈ F \ I πi(I ∪ {j}, cη) <

πi(I, cη).

Proof. Suppose towards a contradiction that there exists a set of informed funds I, some i ∈ I

and some j ∈ F \ I such that πi(I ∪ {j}, cη) ≥ πi(I, cη). Let πi(I ∪ {j}, cη) = π0
i . Then since by

Proposition 6 πi(I ∪ {j}, cη) is increasing in cj , limcj→∞ πi(I ∪ {j}, cη) > π0
i .

However,

lim
cj→∞

αj(I ∪ {j}, cη) = lim
cj→∞

1

(1 + cη + 2cj)
(

1 +
∑
k∈I∪{j}

1
1+ 2ck

1+cη

) = 0

and for all m ∈ I

lim
cj→∞

αm(I ∪ {j}, cη) = lim
cj→∞

1

(1 + cη + 2cm)
(

1 +
∑
k∈I∪{j}

1
1+ 2ck

1+cη

) = αm(I, cη)

14



Therefore,

lim
cj→∞

λ(I ∪ {j}, cη) = λ(I, cη)

and

lim
cj→∞

πi(I ∪ {j}, cη) = σ2(1 + cη + ci) lim
cj→∞

(
α2
i (I ∪ {j}, cη)
λ(I ∪ {j}, cη)

)
= σ2(1 + cη + ci)

(
α2
i (I, cη)
λ(I, cη)

)
= π0

i ,

contradiction.

Corollary 7.1. For any set of informed funds I, any i ∈ I and any set X ⊆ F \ I πi(I ∪ X, cη) <

πi(I, cη).

Proof. The result follows by adding the elements of X one by one and applying Proposition 7.

3.2 Regulator’s perspective

3.2.1 Price informativeness

Proposition 8. PI = σ2∑
i∈I αi.

Proof.

PI = Cov(ṽ, P ) = Cov

ṽ, v + λ

∑
i∈I

αi
λ

(ṽ + η + ci − v) + yl

 = σ2∑
i∈I

αi

since ṽ is independent of η, yl, ci for all i ∈ I.

Proposition 9. For any set of informed funds I, 0 <
∑
i∈I αi < 1.

Proof. For any i ∈ I

αi = 1

(1 + cη + 2ci)
(

1 +
∑
j∈I

1
1+

2cj
1+cη

) > 0

Hence,
∑
i∈I αi > 0.

By A.2 1 = 2(1 + cη + ci)αi + (1 + cη)
∑
j∈I,j 6=i αj > (1 + cη)

∑
i∈I αi. Hence,

∑
i∈I αi <

1
1+cη ≤

1.
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Proposition 8 shows that price informativeness depends only on the analyst errors of the in-

formed funds and the data error (since they determine α) as well as the variance of the asset’s

payoff itself. Since σ2 is constant in the model, I will simply use the notation PI(I, cη).

How does price informativeness change when we change I or cη?

Proposition 10. Given a set of informed funds I, PI is decreasing in cη, and limcη→∞ PI = 0.

Proof. Fix i ∈ I such that cj ≤ ci for all i ∈ I. By 3.3 and 3.1,

PI = σ2∑
i∈I

αi =
σ2∑

j∈I
1+cη+2ci
1+cη+2cj

(1 + cη + 2ci)
(

1 +
∑
j∈I

1
1+

2cj
1+cη

) .

∂

∂cη

∑
j∈I

1 + cη + 2ci
1 + cη + 2cj

=
∑
j∈I

2(cj − ci)
(1 + cη + 2cj)2 ≤ 0

which means that the numerator is weakly decreasing in cη. The denominator is strictly increasing

in cη, hence, PI is decreasing in cη.

lim
cη→∞

∑
j∈I

1 + cη + 2ci
1 + cη + 2cj

= lim
cη→∞

∑
j∈I

1+2ci
cη

+ 1
1+2cj
cη

+ 1
= |I|

lim
cη→∞

(1 + cη + 2ci)

1 +
∑
j∈I

1
1 + 2cj

1+cη

 =∞

Hence, limcη→∞ PI = 0.

Proposition 11. For any given variance of added noise cη, the following statements hold:

(i) for any X,Y ⊆ F if X ⊂ Y, then PI(X, cη) < PI(Y, cη);

(ii) for any X ⊂ F and any y, z ∈ F \ X, cy < cz ⇐⇒ PI(X ∪ {y}, cη) > PI(X ∪ {z}, cη).

Proof. (i) Given cη, fix X ⊂ F and i ∈ F \ X. Let X̃ = X ∪ {i}. Appendix A.2 shows that

∑
j∈X̃

αj(X̃) =
∑
j∈X

αj(X) +

((∑
j∈X αj(X)

)
(1 + cη)− 1

)2

2(1 + cη + ci)−
(∑

j∈X αj(X)
)

(1 + cη)2
. (3.5)
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Here Iuse the notation αj(X̃) and αj(X) to emphasize that for a fund j αj is different when the set

of informed funds is X̃ from when the set of informed funds is X.

From the proof of proposition 9 we know that
∑
j∈X αj <

1
1+cη . This implies that

((∑
j∈X αj

)
(1 + cη)− 1

)2
>

0 and 2(1 + cη + ci)−
(∑

j∈X αj
)

(1 + cη)2 > 1 + cη + 2ci > 0. Therefore,
∑
j∈X̃ αj >

∑
j∈X αj and

so PI(X̃, cη) > PI(X, cη).

Now, Ican build any Y ⊃ X from X by adding the elements from Y \X one by one. Since price

informativeness increases at each step, PI(Y, cη) > PI(X, cη).

(ii)

cy < cz ⇐⇒

∑
j∈X

αj+

((∑
j∈X αj

)
(1 + cη)− 1

)2

2(1 + cη + cy)−
(∑

j∈X αj
)

(1 + cη)2
>
∑
j∈X

αj+

((∑
j∈X αj

)
(1 + cη)− 1

)2

2(1 + cη + cz)−
(∑

j∈X αj
)

(1 + cη)2
⇐⇒

σ2 ∑
j∈X∪{y}

αj > σ2 ∑
j∈X∪{z}

αj ⇐⇒ PI(X ∪ {y}, cη) > PI(X ∪ {z}, cη).

Roughly speaking, Propositions 10 and 11 together imply that the more funds get the data, the

more competent they are, and the higher the quality of the data, the more informative the prices.

3.2.2 Liquidity traders’ welfare

Proposition 12. πl = −λσ2
l .

Proof.

πl = E (yl(ṽ − P )) = E(yl(ṽ − v̄ − λ(
∑
i∈I

yi + yl))) = −λσ2
l

since yl is independent of all other variables in the model.
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4 No regulation

4.1 Equilibrium analysis

In the absence of regulation, the Data Seller is able to commit to selling to an exclusive set of funds.

In reality, such a commitment is enforced by a contractual obligation (i.e. the Data Seller and a

buyer sign a contract that prevents the Data Seller to sell to anyone besides the restricted set of

funds 5, and if he does, the buyer has the right to sue him in court). The model below is stylized,

it does not include the possibility of legal action explicitly, instead the Data Seller commits to not

sell to other funds by making the offers simultaneously and publicly:

Step 1: Data Seller chooses cη which becomes commonly known;

Step 2: Data Seller simultaneously and publicly makes Take-It-or-Leave-It offers to some set I

of the funds;

Step 3: Each fund that received an offer decides whether to accept it or not. Those funds who

accepted the offer receive the dataset at their respective prices.

Let (I∗, c∗η) be a solution to the problem

max
(I,cη)

∑
i∈I

πi(I, cη) such that I ⊆ F, cη ≥ 0.

Proposition 13. The following strategy profile constitutes a Nash equilibrium:

Data Seller: at step 1, chooses cη = c∗η. At step 2, makes an offer to all i ∈ I∗(cη) at price

pi = πi(I∗(cη), cη), where I∗(cη) is a solution to the problem

max
I

∑
i∈I

πi(I, cη) such that I ⊆ F;

Fund i: if i receives an offer, i accepts if pi ≤ πi(K, cη), where K is the set of all funds who

received an offer, and rejects otherwise.
5Theorem 2 implies that it is not necessary to specify funds’ identities in the contract, it is sufficient to specify

the number of the buyers. All the players will then be able to make the correct inference about the equilibrium set
of buyers.
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Proof. Given the strategies of the funds, for any set K and any cη it is optimal for the Data Seller

to set pi = πi(K, cη) for all i ∈ K. Then at step 2 the Data Seller solves the problem

max
I

∑
i∈I

πi(I, cη) such that I ⊆ F,

and I∗(cη) is optimal. And at step 1 the Data Seller solves the problem

max
cη

∑
i∈I∗(cη)

πi(I∗(cη), cη) such that cη ≥ 0,

and c∗η is optimal. Hence, there is no profitable deviation for the Data Seller.

Now consider a fund i ∈ I∗. By playing the above strategy, it gets zero payoff. Any other

strategy would lead to either accepting the offer or rejecting the offer, both resulting in zero payoff.

Hence, there is no profitable deviation for the funds either.

On the equilibrium path, the Data Seller chooses a data error cη and a set I of funds to make

offers to so as to maximize the sum of their expected profits from playing in the financial market.

He then extracts these expected profits by making Take-It-or-Leave-It offers that the funds accept.

What can we say about optimal cη and I?

Proposition 14. 6 For any set I ⊆ F
∑
i∈I πi(I, cη) is maximized when cη = 0.

Proof. Note that

∑
i∈I

πi =
∑
i∈I

σ2α2
i (1 + cη + ci)

λ
= σ2∑

i∈I α
2
i (1 + cη + ci)

σ
σl

√∑
i∈I α

2
i (1 + cη + ci)

= σσl

√∑
i∈I

α2
i (1 + cη + ci) = σ2

l λ.

(4.1)

Therefore, maximizing
∑
i∈I πi(I, cη) is equivalent to maximizing

∑
i∈I α

2
i (1 + cη + ci).

6Admati and Pfleiderer (1988) show that it is optimal to not add any noise in the special case when there are no
interpretation errors. Garcia and Sangiorgi (2011) show that it is optimal to not add any noise in the setting without
interpretation errors but when the data seller can add personalized noise (this setting neither nests nor is nested by
my model).
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Fix any k ∈ I. By 3.3,

∑
i∈I

α2
i (1 + cη + ci) = α2

k(1 + cη + ck) + α2
k

∑
j∈I,j 6=k

(1 + cη + 2ck)2(1 + cη + cj)
(1 + cη + 2cj)2 =

α2
k

∑
j∈I

(1 + cη + 2ck)2(1 + cη + cj)
(1 + cη + 2cj)2 = α2

k(1 + cη + 2ck)2∑
j∈I

1 + cη + cj
(1 + cη + 2cj)2

Substituting the expression for αk from 3.1,

α2
k(1+cη+2ck)2∑

j∈I

1 + cη + cj
(1 + cη + 2cj)2 =

(1 + cη + 2ck)2∑
j∈I

1+cη+cj
(1+cη+2cj)2

(1 + cη + 2ck)2

(
1 +

∑
j∈I

1
1+

2cj
1+cη

)2 =
∑
j∈I

1+cη+cj
(1+cη+2cj)2(

1 +
∑
j∈I

1
1+

2cj
1+cη

)2 .

(4.2)

For any j ∈ I 1+cη+cj
(1+cη+2cj)2 is decreasing in cη since

∂

∂cη

1 + cη + cj
(1 + cη + 2cj)2 = −(1 + cη)

(1 + cη + 2cj)3 < 0,

hence, the numerator of 4.2 is decreasing in cη. And the denominator of 4.2 is increasing in cη

(since for any j ∈ I 2cj
1+cη is decreasing in cη and, thus, 1

1+
2cj

1+cη

is increasing in cη). Therefore, 4.2 is

decresing in cη, and
∑
i∈I πi(I, cη) is maximized when cη = 0.

Theorem 1. In the absence of regulation Data Seller always chooses cη = 0.

Proof. The result follows immediately from Proposition 14 since in the absence of regulation, in

equilibrium, when the Data Seller proposes to a set I of funds, his payoff is equal to
∑
i∈I πi(I, cη).

To simplify further notation let πno reg
DS (I) =

∑
i∈I πi(I, 0).

Proposition 15. For any set of funds I ⊂ F and any i, j ∈ F \ I such that ci < cj

if πno reg
DS (I ∪ {j}) ≥ πno reg

DS (I), then πno reg
DS (I ∪ {i}) > πno reg

DS (I ∪ {j}).

Proof. See Appendix A.3.

Theorem 2. In the absence of regulation the Data Seller makes offers to a subset of the most

competent funds.
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Proof. Suppose, towards a contradiction, that a set of funds I ⊂ F is optimal and there exist j ∈ I

and i ∈ F \ I such that ci < cj . Since I is optimal, πno reg
DS (I) ≥ πno reg

DS (I \ {j}). But then by

Proposition 15 πno reg
DS (I \ {j} ∪ {i}) > πno reg

DS (I \ {j} ∪ {j}) = πno reg
DS (I) which means that I is not

optimal – contradiction.

How large is the optimal subset of the funds? In general, the answer depends on the realization

of the profile of analyst errors. It is, however, easy to characterize in the special case when all the

funds are equally competent.

Example 4.1. Let ci = c for all i ∈ {1, ..., N}. Then in the absence of regulation it is optimal for

the data seller to make offers to 1 + 2c7 (or one of the two closest integers if c is not an integer)

funds.

This result is straightforward: let the data seller make n offers, then using 3.1 and substituting

cη = 0 we get αi = 1
n+1+2c . Then using 3.2 λ = σ

σl
·
√
n(1+c)

n+1+2c . By 3.4 the data seller’s profit is

maximized when lambda is maximized which happens at n = 1 + 2c.

It is optimal to sell to more buyers when funds are less precise since it is harder for the market

makers to make a correct inference about ṽ after observing the noisy aggregate demand and so

adding an additional buyer creates less competition effect on the existing buyers.

4.2 Implications for the regulator

Proposition 16. In the absence of regulation the equilibrium outcome is the worst possible outcome

from the liquidity traders’ perspective.

Proof.

πno reg
DS (I, cη) =

∑
i∈I

πi(I, cη) = λ(I, cη) · σ2
l = −πl,

where the second equality is by 3.4 and the third equality is by Proposition 12. Hence, by maximiz-

ing his own profit the data seller automatically minimizes the welfare of the liquidity traders.
7Admati and Pfleiderer (1988) show a special case of this result: when there are no interpretation errors (i.e.

c = 0), it is optimal to have one informed trader.
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Another way to get the above result is to notice that the financial market is a closed system

that consists of the hedge funds, the market makers, and the liquidity traders. The uninformed

hedge funds do not trade so their profit is zero, and the market makers do not receive any profit in

equilibrium. Therefore, in expectation any profit of the informed hedge funds is necessarily a loss

for the liquidity traders.

The implication of Proposition 16 is that any regulator’s policy would weakly improve the

welfare of the liquidity traders. Combining this with the results from Propositions 10 and 11 we

can conclude that if a policy incentivized the data seller to sell to a superset of the current set of

buyers (when there is no regulation) while keeping the quality of the data high, price informativeness

would increase (strictly), and the welfare of the liquidity traders would increase (weakly) as well.

When studying different policies in the following sections I will focus on how they affect price

informativeness.

5 Fixed price policy

The first policy I consider is the European regulation which I interpret as requiring the data seller

to set a fixed price and then sell to anyone who is willing to buy at that price.

The timing of the game is as follows:

At step 1, the Data Seller chooses a level of noise cη and a price p.

At step 2, the hedge funds simultaneously decide whether to purchase the dataset.

At step 3, the set of buyers becomes publicly known, and the play in the financial market

happens.

Definition 5.1. Given p and cη, step-2-equilibrium is a profile of funds’ decisions about purchasing

the dataset such that if X is the set of funds who buy and i ∈ X, then πi(X, cη) ≥ p and if i /∈ X,

then πi(X ∪ {i}, cη) < p. Let B(p, cη) denote the set of funds-buyers in equilibrium.

Definition 5.2. Most-competent-step-2-equilibrium is a step-2-equilibrium in which B(p, cη) is a

subset of the most competent funds.

Proposition 17. Any combination of p and cη induces at least one most-competent-step-2-equilibrium.
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Proof. Let’s enumerate the funds from 1 to N so that c1 ≤ ... ≤ cN , and for all i ∈ {1, ..., N} let’s

compare πi({1, ..., i}, cη) and p. Three cases are possible.

Case 1: πi({1, ..., i}, cη) < p for all i ∈ {1, ..., N}. Then there exists a most-competent-step-2-

equilibrium in which no one buys the dataset. Indeed, if some fund i ∈ {1, ..., N} was to deviate

and buy, then πi({i}, cη) ≤ π1({1}, cη) < p, where the first inequality is by Proposition 5 and the

second inequality is by assumption.

Case 2: πi({1, ..., i}, cη) ≥ p for all i ∈ {1, ..., N}.Then there exists a most-competent-step-2-

equilibrium in which all the funds buy the dataset. Indeed, for any i ∈ {1, ..., N} πi({1, ..., N}, cη) ≥

πN ({1, ..., N}, cη) ≥ p, where the first inequality is by Proposition 4 and the second inequality is

by assumption.

Case 3: For some but not all i ∈ {1, ..., N} πi({1, ..., i}, cη) < p. Let j be the smallest of

such i. Note that j > 1 since otherwise for all k > j πk({1, ..., k}, cη) ≤ πj({1, ..., k}, cη) <

πj({1, ..., j}, cη) < p, where the first inequality is by Proposition 4, the second inequality is by

Corollary 7.1, and the third inequality is by assumption, but then we would be in a case 1 type

scenario instead of type 3.

There exists a most-competent-step-2-equilibrium in which funds {1, ..., j − 1} buy the dataset

and funds {j, ..., N} do not. Indeed, for all k < j−1 πk({1, ..., j−1}, cη) ≥ πj−1({1, ..., j−1}, cη) ≥ p,

where the first inequality is by Proposition 4 and the second inequality is by assumption, and for

all k > j πk({1, ..., j− 1}∪ {k}, cη) ≤ πj({1, ..., j− 1}∪ {j}, cη) < p, where the first inequality is by

Proposition 5 and the second inequality is by assumption.

To simplify further analysis I will focus on most-competent-step-2-equilibria.

At step 1 the data seller chooses p and cη so as to maximize his expected profit E
(
πFPDS

)
=

p · E (|B(p, cη)|). The expectation is needed since it is possible that a combination of p and cη

induces multiple most-competent-step-2-equilibria.

The following two examples show that the optimal set of buyers can both increase and decrease

under the fixed price policy compared to the benchmark of no regulation.

Example 5.1. Consider a data market with two funds: c1 = 1, c2 = 15, and the cost of providing

the dataset is zero.

23



In the absence of regulation by Theorem 1 it is optimal to choose cη = 0, and by Theorem 2 it

is optimal to sell either to fund 1 alone or to both funds.

π1({1}, 0) ≈ 0.3536σσl

π1({1, 2}, 0) + π2({1, 2}, 0) ≈ 0.3330σσl + 0.0249σσl = 0.3579σσl

Hence, the data seller will choose to sell to both funds.

Under the fixed price policy there are three possible most-competent-step-2-equilibria – when no

one buys, when fund 1 buys, and when both funds buy. Of course, an equilibrium in which no one

buys cannot be optimal. Suppose that optimal p and cη induce an equilibrium in which only fund

1 buys. Then p = π1({1}, cη) since a lower price would result in a lower profit, and a higher price

cannot result in fund 1 buying in equilibrium. By Proposition 14 π1({1}, cη) is maximized when

cη = 0, in which case πFPDS = 0.3536σσl.

If optimal p and cη induce an equilibrium in which both funds buy, then p = π2({1, 2}, cη) since

a lower price would result in a lower profit, and a higher price cannot result in fund 2 buying in

equilibrium. π2({1, 2}, cη) is maximized when cη ≈ 17.7 8, in which case πFPDS ≈ 2 · 0.025σσl =

0.05σσl.

Hence, under the fixed price policy the data seller will sell only to fund 1.

Example 5.2. Consider a data market with three funds: c1 = 0.7, c2 = c3 = 0.77, and the cost of

providing the dataset is zero.

Following the logic of the previous example, in the absence of regulation the data seller chooses

between the following three options:

π1({1}, 0) ≈ 0.3835σσl

π1({1, 2}, 0) + π2({1, 2}, 0) ≈ 0.21603σσl + 0.20082σσl = 0.41685σσl

π1({1, 2, 3}, 0)+π2({1, 2, 3}, 0)+π3({1, 2, 3}, 0) ≈ 0.14577σσl+0.1355σσl+0.1355σσl = 0.41677σσl

Hence, the data seller will choose to sell to funds 1 and 2.

Under the fixed price policy the data seller chooses between π1({1}, cη), 2 ·π2({1, 2}, cη), and 3 ·

π3({1, 2, 3}, cη). Again, π1({1}, cη) is maximized when cη = 0 in which case π1({1}, 0) ≈ 0.3835σσl.
8optimized numerically
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2 · π2({1, 2}, cη) is maximized when cη = 09 in which case 2 · π2({1, 2}, 0) ≈ 2 · 0.20082σσl =

0.40164σσl.

3 ·π3({1, 2, 3}, cη) is maximized when cη = 010 in which case 3 ·π3({1, 2, 3}, 0) ≈ 3 · 0.1355σσl =

0.4065σσl.

Hence, under fixed price policy the data seller will sell to all three funds.

Proposition 18. If in the absence of regulation it is optimal for the data seller to sell to only one

fund, then under the fixed price policy it is still optimal and feasible to sell to only one fund.

Proof. Since in the absence of regulation it was optimal for the data seller to sell to only one fund,

by Theorem 2 it was fund 1 and by Theorem 1 it was optimal to choose cη = 0, i.e. the data seller’s

profit was π1({1}, 0).

Let B(p, cη) be the equilibrium set of buyers at step 2 and let |B(p, cη)| = n. Note that

p ≤ πn(B(p, cη), cη) since fund n buys in equilibrium. Then πFPDS = n · p ≤ n · πn(B(p, cη), cη) ≤∑
i∈B(p,cη) πi(B(p, cη), cη) ≤ π1({1}, 0), where the second inequality is by Proposition 4, and the

last inequality is by assumption. Therefore, π1({c1}, 0) is an upper bound on the data seller’s profit

under the fixed price policy.

It is feasible to achieve this upper bound by choosing cη = 0 and setting p = π1({1}, 0).

Then fund 1 buys in equilibrium while the other funds do not since for any k > 1 πk({1, k}, 0) <

πk({k}, 0) ≤ π1({1}, 0) = p, where the first inequality is by Proposition 7 and the second inequality

is by Proposition 5.

The above theorem shows that a fixed price policy is not effective when a hedge fund gets a

unique access to the information. A natural next step for the regulator is then to consider directly

requiring the data seller to sell to at least some number of buyers.

6 Lower bound on the quantity

Suppose the regulator sets a lower bound on the number of datasets that need to be sold n but

after that the data seller decides who to sell to and at what prices (by making simultaneous public
9optimized numerically

10optimized numerically
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Take-It-or-Leave-It offers as when there is no regulation). Our hope is that it would still be optimal

to sell to the most precise funds and choose the highest quality of the data.

Definition 6.1. A policy is analyst efficient if for any realization of analyst errors {c1, ..., cN} any

equilibrium set of buyers is a subset of the most precise funds.

Definition 6.2. A policy is data efficient if for any realization of analyst errors {c1, ..., cN} if the

data seller provides the dataset, he chooses the highest quality of the data.

Theorem 3. Lower bound on the number of buyers is a data efficient policy.

Proof. The equilibrium strategies are analogous to Proposition 13 with the difference that I∗, c∗η is

now a solution to

max
(I,cη)

∑
i∈I

πi(I, cη) such that I ⊆ F, |I| ≥ n, cη ≥ 0.

On the equilibrium path the data seller still extracts the profits of the informed funds and, therefore,

by Proposition 14 it is optimal to choose cη = 0.

Theorem 4. Lower bound on the number of buyers is not an analyst efficient policy.

Proof. Consider a data market with four funds: c1 = c2 = 0.05, c3 = c4 = 1, and the cost of

providing the dataset is zero. The table below provides the optimal set of buyers, the data seller’s

profit and the resulting price informativeness for different lower bounds.

n optimal set of informed funds πDS PI

0 or 1 {1} 0.49σσl 0.48σ2

2 {1,2} 0.47σσl 0.65σ2

3 {1,3,4} 0.44σσl 0.61σ2

4 {1,2,3,4} 0.42σσl 0.71σ2

When n = 3 the optimal set of buyers is {1, 3, 4} which is not a subset of the most precise funds.

An interesting consequence of Theorem 4 is that a stricter policy does not necessarily imply

higher price informativeness. When n = 2 the data seller sells to funds 1 and 2. When the policy
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is stricter and n = 3, even though the data seller sells to more funds (1,3, and 4), two of them are

less precise and, as a result, the price informativeness is lower than it was with n = 2.

Intuitively, by adding the incompetent funds the data seller creates less competition to the funds

he actually wants to sell to and, hence, can charge them more than if he sold to more competent

new funds. In case the new funds are "extremely incompetent" the data seller’s profit under the

regulation will approach his profit in the absence of regulation:

Proposition 19. Let I∗ be the set of informed funds in the absence of regulation, |I∗| = k. Let

n > k be the lower bound on the quantity, and suppose that there exists a set X of size n − k of

“extremely incompetent" funds (i.e. ci →∞ for all i ∈ X) that are not in the current set of buyers

I∗.

Then

πDS(I∗ ∪ X)→ πDS(I∗),

P I(I∗ ∪ X)→ PI(I∗),

πl(I∗ ∪ X)→ πl(I∗).

Proof. By 3.1 for all i ∈ X αi(I∗ ∪ X) → 0, and for all i ∈ I∗ αi(I∗ ∪ X) → αi(I∗). Hence, by 3.2

λ(I∗ ∪ X)→ λ(I∗). This implies that πDS(I∗ ∪ X)→ πDS(I∗) since for all i ∈ I∗

πi(I∗ ∪ X) = σ2α2
i (I∗ ∪ X)

λ(I∗ ∪ X) (1 + cη + ci)→
σ2α2

i (I∗)
λ(I∗) (1 + cη + ci) = πi(I∗)

and for all i ∈ X

πi(I∗ ∪ X) = σ2α2
i (I∗ ∪ X)

λ(I∗ ∪ X) (1 + cη + ci)→ 0;

PI(I∗ ∪ X) = σ2 ∑
i∈I∗∪X

αi → σ2 ∑
i∈I∗

αi = PI(I∗);

πl(I∗ ∪ X) = −σ2λ(I∗ ∪ X)→ −σ2λ(I∗) = πl(I∗).

By adding the "extremely incompetent" funds the data seller satisfies the regulation, however,
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the market outcomes that are relevant to the regulator (PI and πl) do not change in any meaningful

way, and the policy end up being useless. In order to make sure that the policy is analyst efficient,

the regulator needs to not only set a lower bound on the number of buyers but also impose a

mechanism that should be used when selling the data. An auction can serve as such a mechanism.

7 Auction with a lower bound on the quantity

Suppose the regulator sets a lower bound on the number of datasets that need to be sold n, and

after that the data seller decides whether to provide the dataset. If he does, he chooses a data

error cη which becomes publicly known, and then he sells some number K of the datasets through

a K + 1 price auction 11 (with ties broken randomly) such that K ≥ n.

Proposition 20. Let’s enumerate the funds from 1 to N so that c1 ≤ ... ≤ cK . Given cη and K,

an equilibrium bidding strategy is

if i ≤ K, bi = πi({1, ...,K}, cη),

if i > K, bi = πi({1, ...,K − 1, i}, cη).

Proof. First, note that if ci < cj , then bi > bj : if i ≤ K and j ≤ K, then bi > bj by Proposition 4,

if i > K and j > K, then bi > bj by Proposition 5, and if i ≤ K and j > K, then bi ≥ bK ≥ bj ,

where the first inequality is by Proposition 4 and the second is by Proposition 5. Since ci < cj and

i ≤ K < j, at least one of ci < cK and cK < cj holds and, hence, at least one of the inequalities is

strict. Therefore, K most competent funds receive the dataset if the proposed strategy is played.

Let’s now verify that the proposed bids constitute an equilibrium. Case 1: cK < cK+1. If

ci < cK+1, then i wins and gets a positive profit πi({1, ...,K}, cη) − bK+1 = bi − bK+1 > 0. The

only consequential deviation would be to bid less than bK+1 and lose which is not profitable.

If ci ≥ cK+1, then i loses. The only consequential deviations would be to bid bK (and win

with positive probability) or to bid more than bK (and win for sure), both at price bK . But

πi({1, ...,K − 1, i}, cη)− bK = bi − bK < 0 so this deviation is not profitable.
11Theorems 5 and 6 still hold if one considers pay-as-bid auction instead.
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Case 2: cK = cK+1. The argument for ci < cK+1 and ci > cK+1 still holds. Consider type

cK+1. It gets zero payoff (either by losing or by winning at the price of its profit). If it deviates to

bid less than bK , it’ll lose for sure and still get zero. If it deviates to bid more than bK , it’ll win

for sure at the price of bK , i.e. its profit, and therefore, still get zero. Hence, there is no profitable

deviation.

Theorem 5. Auction with a lower bound on the quantity is an analyst efficient policy.

Proof. See the first paragraph of the proof of Proposition 20.

Theorem 6. Auction with a lower bound on the quantity is not a data efficient policy.

Proof. Consider a data market with three funds: c1 = c2 = 0.05, c3 = 2, and the cost of providing

the dataset is zero. Let n = 2. The data seller will choose to sell K = 2 datasets since K = 3

would result in zero profit. In equilibrium funds 1 and 2 will get the dataset but the data seller’s

profit is determined by the bid of fund 3 b3 = π3({1, 3}, cη) which is maximized when cη ≈ 2.02.

Hence, it is optimal for the data seller to not choose the highest quality of the data, and the policy

is not data efficient.

Figure 1: By selling a nosier version of the dataset
the data seller makes it less valuable for the actual
buyers but induces a higher bid that determines his profit.

The fact that fund 3 values a nosier version of the dataset more than the most informative one

can seem counterintuitive at first. The reason, however, is that even though a nosier version of the
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data is less useful for fund 3, it is also less useful for fund 1. Since fund 3 is worse at interpreting

the data than fund 1, adding some noise reduces fund 3’s comparative disadvantage and increases

its expected profit.

The takeaway from this section is that using an auction is a natural way of making sure that

the funds that value data the most (i.e. the most precise ones) get it in equilibrium, however, not

every auction format creates incentives for the data seller to provide the data of the highest quality.

8 Auction with contingent payments and a lower bound on the

quantity

Suppose the regulator imposes the following auction format on the data seller:

At step 1 the regulator sets the lower bound on the quantity n and an entry fee f .

At step 2 the data seller chooses cη which becomes publicly known, and a number K ≥ n of

datasets to sell.

At step 3 the hedge funds submit their bids as a share of their future profit.

At step 4 the funds with top K bids win (with ties broken randomly) and pay K+1 bid’s share

of their profits.

At step 5 the regulator collects the entry fees from the winners and returns the entry fees to

the losers.

This auction format is based on Hansen (1985) and DeMarzo, Kremer and Skrzypacz (2005) who

show that it has desirable properties from the revenue maximization perspective. It turns out that

it also has desirable properties from the perspective of creating the right incentives for the data

seller.

Proposition 21. Let’s enumerate the funds from 1 to N so that c1 ≤ ... ≤ cK . Given cη and K,

an equilibrium bidding strategy is

if i ≤ K, bi = 1− f
πi({1,...,K},cη) ,

if i > K, bi = 1− f
πi({1,...,K−1,i},cη) .
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Proof. First, note that if ci < cj , then bi > bj (see the proof of Proposition 20). Therefore, K most

competent funds receive the dataset if the proposed strategy is played.

Let’s now verify that the proposed bids constitute an equilibrium. Case 1: cK < cK+1. If

i < K + 1, then i wins and gets a positive profit

(1− bK+1) · πi({1, ...,K}, cη)− f =
(

πi({1, ...,K}, cη)
πK+1({1, ...,K − 1,K + 1}, cη)

− 1
)
· f > 0.

The only consequential deviation would be to bid less than bK+1 and lose which is not profitable.

If i ≥ K + 1, then i loses. The only consequential deviations would be to bid bK (and win with

positive probability) or to bid more than bK (and win for sure), both at price bK . But

(1− bK) · πi({1, ...,K − 1, i}, cη)− f =
(
πi({1, ...,K − 1, i}, cη)
πK({1, ...,K}, cη)

− 1
)
· f < 0,

so such a deviation is not profitable.

Case 2: cK = cK+1. The argument for ci < cK+1 and ci > cK+1 still holds. Consider type

cK+1. It gets zero payoff – either by losing or by winning and getting

(1− bK) · πK+1({1, ...,K − 1,K + 1}, cη)− f =
(
πK+1({1, ...,K − 1,K + 1}, cη)

πK({1, ...,K}, cη)
− 1

)
· f = 0.

If it deviates to bid less than bK , it’ll lose for sure and still get zero. If it deviates to bid more than

bK , it’ll win for sure at the price of bK share of its profit, and therefore, still get zero. Hence, there

is no profitable deviation.

Theorem 7. Auction with contingent payments and a lower bound on the quantity is an analyst

efficient policy.

Proof. See the first paragraph of the proof of Proposition 21.

Theorem 8. Auction with contingent payments and a lower bound on the quantity is a data efficient

policy.
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Proof. For any number of the datasets K that the data seller chooses to sell, the data seller’s

profit is bK+1 ·
∑K
i=1 πi({1, ...,K}, cη). By Proposition 14

∑K
i=1 πi({1, ...,K}, cη) is maximized when

cη = 0.

What is the optimal n? It depends on the regulator’s preferences: by setting n low the regulator

would sometimes not get as much price informativeness/liquidity traders’ welfare as possible, by

setting n high the dataset would sometimes not be produced if the data seller’s expected profit

does not cover the cost.

9 Conclusion

In this paper I show that trading on data sold through data markets can have similar consequences

as insider trading. The regulator might, therefore, consider intervening. When considering different

regulation regimes one should be mindful about how they affect the equilibrium set of data buyers

as well as data seller’s incentives to provide high quality data. Requiring the data seller to sell

the information through an auction with contingent payments and a lower bound on the quantity

increases both liquidity traders’ welfare and price informativeness in expectation. The model,

however, does not account for the fact that in reality traders hold many different assets, and have

access to multiple information sources. The model also does not consider scenarios where the seller

is not a monopolist. Including these features into the model is a direction for future research.
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A Appendix

A.1 Proof of Proposition 1:

Lemma 1. If a ∼ N(µa, σ2
a) and b ∼ N(µb, σ2

b ), then E(a | b) = µa + Cov(a,b)
σ2
b

(b− µb).

Proof. Let λ = Cov(a,b)
σ2
b

, then Cov(a−λb, b) = Cov(a, b)−λV ar(b) = 0. Since for any scalars x1, x2

such that x1, x2 are not both equal to zero,

x1(a− λb) + x2b ∼ N
(
x1µa + (x2 − x1λ)µb, x2

1σ
2
a + (x2 − x1λ)2σ2

b

)
,

a− λb and b are jointly normally distributed. Since their covariance is zero, they are independent.

Then E(a | b) = E(a− λb | b) + λb = E(a− λb) + λb = µa + Cov(a,b)
σ2
b

(b− µb).

Step 1: If fund i is informed, then yi = αi
λ (ṽ + η + εi − v) maximizes i’s expected profit:

E (yi (ṽ − P ) | ṽ + η + εi) = E

yi
ṽ − v − λ

yi +
∑

j∈I,j 6=i

αj
λ

(ṽ + η + εj − v) + yl

 | ṽ + η + εi


Since for all j εj and yl have zero mean and are independent of all other random variables we

can rewrite the above expression as

yi(E(ṽ | ṽ + η + εi)− v)− λy2
i − yi(

∑
j∈I,j 6=i

αj)(E(ṽ + η | ṽ + η + εi)− v) (A.1)

Note that ṽ + η + εi ∼ N(v, σ2 + cησ
2 + ciσ

2). Then by Lemma 1

E(ṽ | ṽ + η + εi) = v + Cov(ṽ, ṽ + η + εi)
σ2 + cησ2 + ciσ2 (ṽ + η + εi − v) = v + σ2

σ2 + cησ2 + ciσ2 (ṽ + η + εi − v) =

= v + 1
1 + cη + ci

(ṽ + η + εi − v)
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and

E(ṽ+η | ṽ+η+εi) = v+Cov(ṽ + η, ṽ + η + εi)
σ2 + cησ2 + ciσ2 (ṽ+η+εi−v) = v+ σ2 + cησ

2

σ2 + cησ2 + ciσ2 (ṽ+η+εi−v) =

= v + 1 + cη
1 + cη + ci

(ṽ + η + εi − v)

Substituting back to A.1 we get

−λy2
i + yi(ṽ + η + εi − v)

 1
1 + cη + ci

− 1 + cη
1 + cη + ci

·
∑

j∈I,j 6=i
αj


Since it is a concave quadratic function, the optimum is at

yi =

(
1

2(1+cη+ci) −
1+cη

2(1+cη+ci) ·
∑
j∈I,j 6=i αj

)
λ

· (ṽ + η + εi − v)

It is left to check that

αi = 1
2(1 + cη + ci)

− 1 + cη
2(1 + cη + ci)

·
∑

j∈I,j 6=i
αj for all i ∈ I, or

2(1 + cη + ci)αi + (1 + cη)
∑

j∈I,j 6=i
αj = 1 for all i ∈ I (A.2)

By A.2, for any i, j ∈ I such that j 6= i

2(1 + cη + ci)αi + (1 + cη)αj = 2(1 + cη + cj)αj + (1 + cη)αi

and, hence,

αj = 1 + cη + 2ci
1 + cη + 2cj

αi. (A.3)

By substituting into A.2, we get

2(1 + cη + ci)αi + αi(1 + cη)
∑

j∈I,j 6=i

1 + cη + 2ci
1 + cη + 2cj

= 1
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αi

1 + cη + 2ci + (1 + cη)
∑
j∈I

1 + cη + 2ci
1 + cη + 2cj

 = 1

αi = 1
(1 + cη + 2ci)

(
1 + (1 + cη)

∑
j∈I

1
1+cη+2cj

) = 1

(1 + cη + 2ci)
(

1 +
∑
j∈I

1
1+

2cj
1+cη

)

Therefore, yi = αi
λ (ṽ + η + εi − v) is indeed optimal.

Step 2: If fund i is uninformed, then yi = 0 maximizes i’s expected profit:

E (yi (ṽ − P )) = E

yi
ṽ − v − λ

yi +
∑
j∈I

αj
λ

(ṽ + η + εj − v) + yl


Since i does not have any additional information, from i’s perspective E(ṽ) = v and E(ṽ + η +

εj) = v for all j. Therefore, i maximizes −λy2
i which means that it is optimal to demand yi = 0.

Step 3: The market price is equal to the expected payoff of the asset conditional on observing

the order flow:

Lemma 2.
∑
i∈I αi − (

∑
i∈I αi)

2 (1 + cη)−
∑
i∈I α

2
i ci =

∑
i∈I α

2
i (1 + cη + ci).

Proof. Let |I| = n and let � = (αi : i ∈ I). We can rewrite A.2 in matrix notation as

A� = 1n,

where 1n is a column vector of ones of length n,

A = (1 + cη)1n1ᵀn + (1 + cη)In + 2C, (A.4)

where In is the identity matrix of size n× n and C is a diagonal matrix with entries cj for j ∈ I.

Since at step 1 we have established that A.2 always has a unique solution, we can write

� = A−1
1n. (A.5)
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We now want to show that

1
ᵀ
n�− (1 + cη)�ᵀ

1n1
ᵀ
n�− �ᵀC� = (1 + cη)�ᵀ� + �ᵀC�.

Rearranging the terms,

1
ᵀ
n�− (1 + cη)�ᵀ

1n1
ᵀ
n�− (1 + cη)�ᵀ� = �ᵀ(2C)�.

Substituting 2C = A− (1 + cη)1n1ᵀn − (1 + cη)In by A.4 into the right-hand side, we get

�ᵀ(2C)� = �ᵀ(A− (1 + cη)1n1ᵀn − (1 + cη)In)� = �ᵀA�− (1 + cη)�ᵀ
1n1

ᵀ
n�− (1 + cη)�ᵀ�

By A.5 �ᵀ = 1
ᵀ
nA−ᵀ. Since A is symmetric, A−ᵀ = A−1 and, hence, �ᵀA� = 1

ᵀ
nA−1A� = 1

ᵀ
n�.

Then,

�ᵀ(2C)� = 1
ᵀ
n�− (1 + cη)�ᵀ

1n1
ᵀ
n�− (1 + cη)�ᵀ�,

as desired.

We are now ready to finish the proof.

ỹ =
N∑
i=1

yi + yl =
∑
i∈I

yi + yl =
∑
i∈I

αi
λ

(ṽ + η + εi − v) + yl

Note that
∑
i∈I

αi
λ (ṽ + η + εi − v) + yl ∼ N(0, V ar(ỹ)), where

V ar(ỹ) = (
∑
i∈I

αi
λ )2σ2 + (

∑
i∈I

αi
λ )2cησ

2 +
∑
i∈I(αiλ )2ciσ

2 + σ2
l .

Then by Lemma 1 P = E(ṽ | ỹ) = v + Cov(ṽ,ỹ)
V ar(ỹ) · ỹ.

Cov(ṽ, ỹ)
V ar(ỹ) =

∑
i∈I

αi
λ σ

2

(
∑
i∈I

αi
λ )2σ2 + (

∑
i∈I

αi
λ )2cησ2 +

∑
i∈I(αiλ )2ciσ2 + σ2

l

= λ

To see that the last equality holds multiply the numerator and the denominator of the left part

by λ2, then divide both parts of the equality by λ and solve for λ2:
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(
∑
i∈I αi)σ2λ

(
∑
i∈I αi)2σ2 + (

∑
i∈I αi)2cησ2 + (

∑
i∈I α

2
i ci)σ2 + λ2σ2

l

= λ

λ2 = σ2

σ2
l

∑
i∈I

αi −

∑
i∈I

αi

2

(1 + cη)−
∑
i∈I

α2
i ci

 = σ2

σ2
l

∑
i∈I

α2
i (1 + cη + ci) by Lemma 2

Therefore, indeed P = E(ṽ | ỹ) = v + λỹ.

A.2 Proof of formula 3.5 in Proposition ??:

Let |X| = n and let �n = (αi(X) : i ∈ X) and �n+1 = (αi(X̃) : i ∈ X̃).

By A.5

�n = A−1
1n,

where 1n is a column vector of ones of length n,

A = (1 + cη)1n1ᵀn + (1 + cη)In + 2C,

where In is the identity matrix of size n× n and C is a diagonal matrix with entries cj for j ∈ X.

Analogously,

�n+1 = A−1
n+11n+1,

where

An+1 =

 An (1 + cη)1n

(1 + cη)1ᵀn 2(1 + cη + ci)


We are interested in the relationship between

∑
j∈X αj(X) = 1

ᵀ
n�n = 1

ᵀ
nA−1

1n and
∑
j∈X̃ αj(X̃) =

1
ᵀ
n+1�n+1 = 1

ᵀ
n+1A

−1
n+11n+1.
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Let z = 1
ᵀ
nA−1

1n and let

A−1
n+1 =

 B11 B12

B21 B22

 (A.6)

Using a formula for 2× 2 block matrix inverse,

B11 = A−1
n + A−1

n (1 + cη)1n
(
2(1 + cη + ci)− (1 + cη)1ᵀnA−1

n (1 + cη)1n
)−1

(1 + cη)1ᵀnA−1
n =

A−1
n + (1 + cη)2A−1

n 1n

(
2(1 + cη + ci)− (1 + cη)2z

)−1
1
ᵀ
nA−1

n

B12 = −A−1
n (1 + cη)1n

(
2(1 + cη + ci)− (1 + cη)1ᵀnA−1

n (1 + cη)1n
)−1

=

−(1 + cη)A−1
n 1n

(
2(1 + cη + ci)− (1 + cη)2z

)−1

B21 = −
(
2(1 + cη + ci)− (1 + cη)1ᵀnA−1

n (1 + cη)1n
)−1

(1 + cη)1ᵀnA−1
n =

−(1 + cη)
(
2(1 + cη + ci)− (1 + cη)2z

)−1
1
ᵀ
nA−1

n

B22 =
(
2(1 + cη + ci)− (1 + cη)1ᵀnA−1

n (1 + cη)1n
)−1

=
(
2(1 + cη + ci)− (1 + cη)2z

)−1

Note that B11 is n × n, B12 is n × 1, B21 is 1 × n, and B22 is 1 × 1. Since 1ᵀn+1A
−1
n+11n+1 is the

sum of all entries of A−1
n+1, we can rewrite it as

1
ᵀ
n+1A

−1
n+11n+1 = 1

ᵀ
n+1

 B11 B12

B21 B22

1n+1 = 1
ᵀ
nB111n + 1

ᵀ
nB12 +B211n +B22 =

= z + (1 + cη)2z2
(
2(1 + cη + ci)− (1 + cη)2z

)−1
−

−2(1 + cη)z
(
2(1 + cη + ci)− (1 + cη)2z

)−1
+

+
(
2(1 + cη + ci)− (1 + cη)2z

)−1
=

= z +
(
2(1 + cη + ci)− (1 + cη)2z

)−1
((1 + cη)z − 1)2.

38



Hence, ∑
j∈X̃

αj(X̃) =
∑
j∈X

αj(X) +

((∑
j∈X αj(X)

)
(1 + cη)− 1

)2

2(1 + cη + ci)−
(∑

j∈X αj(X)
)

(1 + cη)2
.

A.3 Proof of Proposition 15:

Step 1: πno reg
DS (X) = σ2

l λ(X, 0) = σσl

√∑
i∈X αi(X, 0)− (

∑
i∈X αi(X, 0))2 −

∑
i∈X(αi(X, 0))2ci, where

the first equality follows by 4.1 and the second equality follows by Lemma 2.

Let X̃ = X ∪ {j}. Then πno reg
DS (X ∪ {j}) ≥ πno reg

DS (X) is equivalent to

∑
k∈X̃

αk(X̃, 0)−

∑
k∈X̃

αk(X̃, 0)

2

−
∑
k∈X̃

(αk(X̃, 0))2ci ≥
∑
k∈X

αk(X, 0)−

∑
k∈X

αk(X, 0)

2

−
∑
k∈X

(αk(X, 0))2ci.

(A.7)

Let |X| = n and let �n = (αk(X) : k ∈ X) and �n+1 = (αk(X̃) : k ∈ X̃).

By A.5

�n = A−1
n 1n,

where 1n is a column vector of ones of length n,

An = 1n1
ᵀ
n + In + 2Cn,

where In is the identity matrix of size n× n and Cn is a diagonal matrix with entries ci for k ∈ X.

Let

z =
∑
k∈X

αk(X) = 1
ᵀ
n�n = 1

ᵀ
nA−1

n 1n

and

w =
∑
k∈X

(αk(X, 0))2ci = �ᵀ
nCn�n = 1

ᵀ
nA−1

n CnA−1
n 1n.

Then ∑
k∈X

αk(X, 0)−

∑
k∈X

αk(X, 0)

2

−
∑
k∈X

(αk(X, 0))2ci = z − z2 − w.
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Using 3.5 and substituting cη = 0, we get

∑
k∈X̃

αk(X̃, 0) = z + (2(1 + cj)− z)−1 (z − 1)2.

Then

∑
k∈X̃

αk(X̃, 0)

2

= z2 + 2z (2(1 + cj)− z)−1 (z − 1)2 + (2(1 + cj)− z)−2 (z − 1)4

We would now like to express
∑
k∈X̃(αk(X̃, 0))2ci in terms of z, w, cj . By A.5,

�n+1 = A−1
n+11n+1,

where

An+1 =

 An 1n

1
ᵀ
n 2(1 + cj)


Let

Cn+1 =

 Cn on

o
ᵀ
n cj


where on is a column vector of zeros of length n. Then

∑
k∈X̃

(αk(X̃, 0))2ci = �ᵀ
n+1Cn+1�n+1 = 1

ᵀ
n+1A

−1
n+1Cn+1A−1

n+11n+1.

Using A.6 and substituting cη = 0, we get

A−1
n+1 =

 A−1
n + A−1

n 1n (2(1 + ci)− z)−1
1
ᵀ
nA−1

n −A−1
n 1n (2(1 + ci)− z)−1

− (2(1 + ci)− z)−1
1
ᵀ
nA−1

n (2(1 + ci)− z)−1



A−1
n+1Cn+1A−1

n+1 =

 D11 D12

D21 D22


where
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D11 = A−1
n CnA−1

n +(2(1+cj)−z)−1A−1
n 1n1

ᵀ
nA−1

n CnA−1
n +(2(1+cj)−z)−1A−1

n CnA−1
n 1n1

ᵀ
nA−1

n +

(2(1 + cj)− z)−2A−1
n 1n1

ᵀ
nA−1

n CnA−1
n 1n1

ᵀA−1
n + (2(1 + cj)− z)−2cjA−1

n 1n1
ᵀ
nA−1

n

D12 = −(2(1 + cj)− z)−1A−1
n CnA−1

n 1n− (2(1 + cj)− z)−2A−1
n 1n1

ᵀ
nA−1

n CnA−1
n 1n− (2(1 + cj)−

z)−2A−1
n 1ncj

D21 = −(2(1 + cj)− z)−1
1
ᵀ
nA−1

n CnA−1
n − (2(1 + cj)− z)−2

1
ᵀ
nA−1

n CnA−1
n 1n1

ᵀ
nA−1

n − (2(1 + cj)−

z)−2
1
ᵀ
nA−1

n cj

D22 = (2(1 + cj)− z)−2
1
ᵀ
nA−1

n CnA−1
n 1n + (2(1 + cj)− z)−2cj

Note that D11 is n×n, D12 is n×1, D21 is 1×n, and D22 is 1×1. Since 1ᵀn+1A
−1
n+1Cn+1A−1

n+11n+1

is the sum of all entries of A−1
n+1Cn+1A−1

n+1, we can rewrite it as

1
ᵀ
n+1A

−1
n+1Cn+1A−1

n+11n+1 = 1
ᵀ
n+1

 D11 D12

D21 D22

1n+1 = 1
ᵀ
nD111n + 1

ᵀ
nD12 +D211n +D22 =

1
ᵀ
nA−1

n CnA−1
n 1n+(2(1+cj)−z)−1

1
ᵀ
nA−1

n 1n1
ᵀ
nA−1

n CnA−1
n 1n+(2(1+cj)−z)−1

1
ᵀ
nA−1

n CnA−1
n 1n1

ᵀ
nA−1

n 1n+

(2(1 + cj)− z)−2
1
ᵀ
nA−1

n 1n1
ᵀ
nA−1

n CnA−1
n 1n1

ᵀA−1
n 1n + (2(1 + cj)− z)−2cj1

ᵀ
nA−1

n 1n1
ᵀ
nA−1

n 1n−

(2(1 + cj) − z)−1
1
ᵀ
nA−1

n CnA−1
n 1n − (2(1 + cj) − z)−2

1
ᵀ
nA−1

n 1n1
ᵀ
nA−1

n CnA−1
n 1n − (2(1 + cj) −

z)−2
1
ᵀ
nA−1

n 1ncj−

(2(1 + cj) − z)−1
1
ᵀ
nA−1

n CnA−1
n 1n − (2(1 + cj) − z)−2

1
ᵀ
nA−1

n CnA−1
n 1n1

ᵀ
nA−1

n 1n − (2(1 + cj) −

z)−2cj1
ᵀ
nA−1

n 1n+

(2(1 + cj)− z)−2
1
ᵀ
nA−1

n CnA−1
n 1n + (2(1 + cj)− z)−2cj =

w + (2(1 + cj)− z)−12w(z − 1) + (2(1 + cj)− z)−2(w + cj)(z − 1)2.

We can now express
∑
k∈X̃ αk(X̃, 0)−

(∑
k∈X̃ αk(X̃, 0)

)2
−
∑
k∈X̃(αk(X̃, 0))2ci in terms of z, w, cj :

∑
k∈X̃

αk(X̃, 0)−

∑
k∈X̃

αk(X̃, 0)

2

−
∑
k∈X̃

(αk(X̃, 0))2ci =

z + (2(1 + cj)− z)−1 (z − 1)2 −
(
z2 + 2z (2(1 + cj) + z)−1 (z − 1)2 +

(2(1 + cj)− z)−2 (z−1)4 )−
(
w + (2(1 + cj)− z)−12w(z − 1) + (2(1 + cj)− z)−2(w + cj)(z − 1)2

)
=
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z − z2 − w + (1− z)((4w + 4z2 − 5z + 1)cj − wz + 3w − z3 + 4z2 − 4z + 1)
(2(1 + cj)− z)2

We can rewrite A.7 as

z − z2 − w + (1− z)((4w + 4z2 − 5z + 1)cj − wz + 3w − z3 + 4z2 − 4z + 1)
(2(1 + cj)− z)2 ≥ z − z2 − w

or

(4w + 4z2 − 5z + 1)cj − wz + 3w − z3 + 4z2 − 4z + 1 ≥ 0 (A.8)

since z < 1 by Proposition 9.

Step 2: We will show that if A.8 holds, then∑
k∈X∪{h} αi(X∪{h}, 0)−

(∑
k∈X∪{h} αi(X ∪ {h}, 0)

)2
−
∑
k∈X∪{h}(αi(X∪{h}, 0))2ci is decreasing

in ch on [0, cj ], i.e.

∂

∂ch

(
z − z2 − w + (1− z)((4w + 4z2 − 5z + 1)ch − wz + 3w − z3 + 4z2 − 4z + 1)

(2(1 + ch)− z)2

)
< 0. (A.9)

∂

∂ch

(
z − z2 − w + (1− z)((4w + 4z2 − 5z + 1)ch − wz + 3w − z3 + 4z2 − 4z + 1)

(2(1 + ch)− z)2

)
=

(z − 1)(2(4w + 4z2 − 5z + 1)ch + 4w + 3z2 − 5z + 2)
(2(1 + ch)− z)3

Since z < 1, z − 1 < 0 and 2(1 + ch)− z ≥ 2− z > 0. Hence, showing A.9 is equivalent to showing

that

2(4w + 4z2 − 5z + 1)ch + 4w + 3z2 − 5z + 2 > 0. (A.10)

We want to show that A.8 implies A.10.

Case 1: 4w+4z2−5z+1 ≥ 0. Then 2(4w+4z2−5z+1)ch+4w+3z2−5z+2 is either constant

or increasing in ch, and so it is sufficient to check that A.10 holds when ch = 0. By assumption

4w ≥ −4z2 + 5z − 1. Hence, 4w + 3z2 − 5z + 2 ≥ −z2 + 1 > 0 since z < 1 by Proposition 9.

Case 2: 4w + 4z2 − 5z + 1 < 0. Then A.8 implies that cj ≤ wz−3w+z3−4z2+4z−1
4w+4z2−5z+1 . We need to

check A.10 for all ch ∈ [0, cj ] for all cj ∈ [0, wz−3w+z3−4z2+4z−1
4w+4z2−5z+1 ] 12. Since in this case 2(4w+ 4z2 −

124w+4z2−5z+1 < 0 implies that wz−3w+z3−4z2+4z−1 < 1
4 (z2−1) < 0 and, therefore, wz−3w+z3−4z2+4z−1

4w+4z2−5z+1 > 0.
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5z+ 1)ch + 4w+ 3z2− 5z+ 2 is a decreasing function of ch, it is sufficient to check that A.10 holds

at ch = wz−3w+z3−4z2+4z−1
4w+4z2−5z+1 , i.e. that 2(wz − 3w + z3 − 4z2 + 4z − 1) + 4w + 3z2 − 5z + 2 > 0.

2(wz − 3w + z3 − 4z2 + 4z − 1) + 4w + 3z2 − 5z + 2 =

2(z − 1)w + 2z3 − 5z2 + 3z + 1 > 2(z − 1)(−z2 + 5
4z −

1
4) + 2z3 − 5z2 + 3z + 1 =

1
2(3− z2) > 0,

where the inequalities hold because z < 1 and because 4w+4z2−5z+1 < 0 implies w < −z2+ 5
4z−

1
4 .

Step 3: Remember that X̃ = X ∪ {j}. Let X̂ = X ∪ {i} for some i such that ci < cj . By step 1

since πno reg
DS (X ∪ {j}) ≥ πno reg

DS (X),

∑
k∈X̃

αk(X̃, 0)−

∑
k∈X̃

αk(X̃, 0)

2

−
∑
k∈X̃

(αk(X̃, 0))2ci ≥
∑
k∈X

αk(X, 0)−

∑
k∈X

αk(X, 0)

2

−
∑
k∈X

(αk(X, 0))2ci.

Then by step 2,

∑
k∈X̂

αk(X̂, 0)−

∑
k∈X̂

αk(X̂, 0)

2

−
∑
k∈X̂

(αk(X̂, 0))2ci >
∑
k∈X̃

αk(X̃, 0)−

∑
k∈X̃

αk(X̃, 0)

2

−
∑
k∈X̃

(αk(X̃, 0))2ci,

which means that πno reg
DS (X ∪ {i}) > πno reg

DS (X ∪ {j}) again by step 1. This concludes the proof.
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